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Chapter 1

What is Bayesian Statistics

1.1 Bayesian vs. Classical, Frequentist Statis-

tics

Bayesian Statistics is a system for statistical inference and decision making
which is based on expressing all uncertainty in terms of conditional proba-
bility statements. For example: in classical, frequentist statistics, a theory
has no probability of being correct or incorrect - it is either correct or in-
correct, we’re just unsure about the truth. But in Bayesian statistics, we’re
allowed to construct probability models over both observations (data), and
beliefs (unknown parameters and theories), and so come up with an actual
p(theory|data).

There are two aspects of Bayesian Statistics that are important to under-
stand. The first is that unknown variables are not treated as they are in
classical, frequentist statistics. In frequentist statistics, even if some value θ
is unknown to us, it is assumed that θ has some true numeric value. Take the
proportion of people in America who like Lady Gaga. A frequentist assumes
that there is some true percentage of people in America who like Lady Gaga.
And he can estimate that percentage by, for example, asking a (hopefully)
random sample of Americans if they like Lady Gaga, and from that he can
develop a confidence interval.

Say he gets a 95% confidence interval from 22% to 25%. It’s not that he
believes that there is a 95% chance that θ is somewhere inside the interval
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6 CHAPTER 1. WHAT IS BAYESIAN STATISTICS

[.22, .25], rather that there is a 95% chance that his confidence interval has
overlapped with the fixed, real value of θ.

The Bayesian approach is a little different. A Bayesian might develop a
similar confidence interval - say it’s [.22, .25] again, and say that she is 95%
sure that θ is equal to some value in [.22, .25].

Foul, you say! Er, at least that’s what I said. This is all well and good,
but there actually is some fixed, true value of θ. We shouldn’t place a distri-
bution over θ - it’s fixed (at least at a fixed time T )! Just unknown! Right?
Well, sort of. Here’s the thing: there’s an amazing amount of very power-
ful methods and tools you can utilize if you treat unknown variables like
a Bayesian does. And instead of thinking that you’re placing a probability
distribution over θ, which actually is a bit silly (in most circumstances), you
can think of the distribution as a distribution of your beliefs about all possi-
ble values of θ - which, handily enough, can be altered by new, incoming data.

Okay, so that’s the first important aspect of Bayesian Statistics: treat un-
known variables as variables to be pulled from belief distributions that you
define based on information, rather than fixed variables you attempt to es-
timate. The second important aspect of Bayesian Statistics is the handy
result that comes from allowing unknown variables to have probability dis-
tributions. Basically, it is the ability to infer a new probability distribution
over your unknown variable by using new evidence (data), through the use
of Bayes Rule.

Ever heard of Bayes Rule? Yeah, I did to in my first statistics class (col-
lege, sophomore year), and it pretty much annoyed the heck out of me that
something so obvious and intuitive could be named after - in all likelihood -
an old white guy who probably believed in God. But, it’s important to go
over it, because the implications of this formula are very powerful, and very
important to understand well.

p(A|B) =
p(B|A) ∗ p(A)

p(B)
(1.1)

(If this equation makes total sense to you, skip the following paragraph.)
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Rain(A)
Clouds(B)

In English, this says that the probability of event A, given that event B
has happened, is the probability of event B happening, given A, multiplied
by the probability of A in the first place (in other words, the probability of
both A and B happening, also equal to p(A|B) ∗ p(B), all divided by the
probability of B happening. So, the probability of B and A happening, over
the probability of B happening, equals the probability of A happening, given
B.

An example: say that A = rain, and B = a cloudy day. Then the prob-
ability of rain, given the fact that it’s cloudy outside, is just the proportion
of days that are both cloudy and rainy, divided by the proportion of days
that are at least cloudy! So, given that we have a cloudy day (we’re inside
the grey circle above), the probability of it raining is just the area of the dark
blue region (rain and clouds) divided by the entire clouds circle. This should
make sense. Try to match up this cloud/rain example in your mind with the
equation above.

Okay, got that? Good. So, what does this equation have to do with Bayesian
Statistics in general? Well, it is very often the case that we want to estimate
some parameter of a population (like the proportion of people who like Lady
Gaga, θ, in the population of the United States). So if we allow our estimate
of, say, θ, to be defined over a distribution, and we have some observed data,
we can have:
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p(θ|data) =
p(data|θ)p(θ)
p(data)

(1.2)

This equation is the source of a lot of what follows in this booklet thingy.
Beginning from this equation, we can answer three main questions of infer-
ential parametric statistics:

1. Parameter Estimation (given a model and data)

2. Prediction of New Data Values (given a model and data)

3. Model Checking (which model is best? Is it even good?)

It’s very nice to be able to calculate these things with paper and pencil, or
in more complex or difficult problems, estimate them (well!) by computer
simulations.



Chapter 2

Probability Review

Most of the stuff in this chapter should be a pretty easy review for you - it
should make you feel a little snide for already understanding, or at least
easily understanding, what is being outlined. Good. If you don’t feel even

mildly snide about more than a few things, wikipedia that shiznats until it’s
your willing statistical servant.

1. Random variables

2. Probability distributions

3. Moments: mean and variance

4. Likelihood Function

5. Maximum Likelihood Estimation

6. Joint distributions

7. Conditional distributions & independence

8. Important Probability Distributions

9. Bayes’ Theorom
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10 CHAPTER 2. PROBABILITY REVIEW

2.1 Random variables

Random variables are random, but come from distributions. For more than
that, go read Wikipedia, fool.

2.2 Probability distributions

The probability mass function (pmt) of a random variable X is:

fX(x) = p(X = x) (2.1)

The cumulative distribution function (cdf) of a random variable X is
defined as:

FX(x) = p(X ≤ x),∀x ∈ R (2.2)

- Can be discrete or continuous (or both, but that’s ... ugly).
- Random variables are identically distributed if they have the same cdf.

Figure 2.1: On the left, various normal CDFs. On the right, examples of a
discrete, continuous, and a discrete-and-continuous CDF.

The probability density function (pdf) of a continuous random variable
X is the function fX that satisfies:
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∫ x

−∞
fX(t) dt = FX(x) (2.3)

Intuitively, fX is the simply the probability of x occurring for any given
point, (but since X is a continuous random variable, the probability of x
occurring at any one point is zero). For discrete random variables, fX is the
function which outputs the probability that X will = x for any input x, and
it (similarly) satisfies

∑x
−∞ fX(t) dt = FX(x).)

Note that
∑∞
−∞ fX(t) dt = 1 =

∫∞
−∞ fX(t) dt.

For continuous random variables:

1. p(X = x) = 0

2. p(X ∈ A) =
∫
A
fX(t) dt

3. d
dx
FX(x) = fX(x)

4. p(a ≤ X ≤ b) = p(a < X < b)

5. This is all just simple calculus stuff.

2.3 Moments: mean and variance

A moment is a sort of measure of a set of points. The nth moment of a real
valued continuous function f(x) about a real value c is:

µn =

∫ ∞
−∞

(x− c)nf(x)dx (2.4)

A central moment is a moment with c equal to a variable’s mean, E(X).
Generally, though, c=0.

So, the expected value or mean of a function f(x) is the first moment
of x, µ1, equal to:∫∞
−∞ xfX(x) dx . . . if x is continuous∑
x xfX(x) . . . if x is discrete
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For integer n, the nth moment of X is E[Xn], and the nth central moment of
X is E[(X − E[X])n].

The variance of a random variable is its second central moment, E[(X −
E[X])2]. In Bayesian statistics, the variance of an unknown parameter is the
uncertainty in belief of its value.

E[aX + b] = aE[X] + b (2.5)

V ar(aX + b) = a2V ar(X) (2.6)

2.4 Likelihood Function

Let X = (X1, X2, . . . , Xn) denote data and θ denote the unknown parame-
ter(s) of the distribution that defines X.

Then the likelihood function is the joint pmf/pdf of the data, given the
parameters:

f(X|θ) =
n∏
i=1

f(Xi|θ) (2.7)

But it’s often handy to work with the log likelihood:

log(f(X|θ)) =
n∑
i=1

log(f(Xi|θ)) (2.8)

The maximum likelihood estimator (MLE), θ, maximizes f(X|θ) to find an
estimate of θ̂: the MLE of θ.

The MLE is asymptotically normal as n→∞, with mean 0.
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2.5 Joint distributions

(X, Y ) is a discrete bivariate random vector if it takes a countable number of
possible values. Then fX,Y (x, y) = p(X = x, Y = y) is the joint probability
mass function of (X, Y ), and the marginal pmf of X can be computed
as

fX(x) =
∑
y

fX,Y (x, y) (2.9)

. . . where the sum is taken over the values of y such that fX,Y (x, y) > 0.

Similarly, (X, Y ) is a continuous bivariate random vector if it takes an in-
finite number of possible values. Then fX,Y (x, y) is the joint probability
density function of (X, Y ) where for every A ⊂ R2:

p((X, Y ) ∈ A) =

∫ ∫
(x,y)∈A

fX,Y (x, y)dxdy (2.10)

Then the marginal pdf of X can be computed as

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy (2.11)

These ideas extend to n-dimensional random vectors with n > 2.

2.6 Conditional distributions & independence

Take a discrete random variable (X, Y ): For any x such that p(X = x) > 0,
the conditional pmf of Y given that X = x is defined as:

fY |X(y|x) = p(Y = y|X = x) =
p(X = x, Y = y)

p(X = x)
=
fX,Y (x, y)

fX(x)
(2.12)

Continuous random variable (X, Y ): For any set x such that fX(x) > 0,
the conditional pdf of Y given that X = x is defined as:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

joint(x, y)

marginal(x)
(2.13)

X and Y are independent if for every x ∈ R and y ∈ R:

fX,Y (x, y) = fX(x)fY (y) (2.14)
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2.7 Important Probability Distributions

Discrete: Discrete Uniform, Binomial, Poisson, Multinomial, Negative bi-
nomial, Hypergeometric
Continuous: Uniform, Exponential, (glorious) Normal, Beta, Gamma, In-
verse Gamma, t

2.8 Bayes’ Theorem

By the definition of conditional probability:

f(y|x)f(x) = f(x, y) = f(x|y)f(y) =⇒ f(y|x) =
f(x|y)f(y)

f(x)
(2.15)

Bayes Theorem is central to Bayesian statistics because it allows us to
obtain a posterior for some parameter, given data x:

posterior(θ) = f(θ|x) =
f(x|θ)f(θ)

f(x)
∝ f(x|θ)f(θ) (2.16)

since the denominator, f(x), does not involve θ in any way, and so is a
constant.

Note that we can also rewrite f(x) (by the Law of Total Probability):

f(y|x) =
f(x|y)f(y)∑
y f(x|y)f(y)

(discrete case) (2.17)

f(y|x) =
f(x|y)f(y)∫

y
f(x|y)f(y)dy

(continuous case) (2.18)
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2.9 Vocab Review

Bayes Theorem f(θ|x) = f(x|θ)f(θ)
f(x)

∝ f(x|θ)f(θ)

Conditional Probability f(y|x)f(x) = f(x, y) = f(x|y)f(y)

Marginal Probability fX(x) =
∑

y fX,Y (x, y) OR
∫∞
−∞ fX,Y (x, y)dy

Likelihood Function f(X|θ) =
∏n

i=1 f(Xi|θ)

Okay, that’s it for review. Now go drink a glass of orange juice. Or be a
beast and read on immediately.
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Chapter 3

The Story: Likelihoods, Priors,
and Posteriors

1. Wait, what?

2. Bayesian Inference

3. Hierarchical Models

3.1 Wait, what?

So, we have this Bayes equation. But what the hell is p(data|θ), p(θ), or
p(data), in the equation:

f(θ|data) =
f(data|θ)f(θ)

f(data)
∝ f(data|θ)f(θ) (3.1)

Well,

1. p(data|θ) is simply the likelihood (the ‘L’ in the MLE Maximum Like-
lihood Estimate) of your data given θ. So, for observed data xi...xn,
we have: ∏n

i=1
f(xi|θ) (3.2)

17
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2. p(data) is just a constant, so in practice we can just ignore it, and then
make sure our resultant equation p(θ|data) sums to 1, since p(θ|data)is
a probability distribution. (It’s a constant because it doesn’t involve
θ, which is the variable we’re looking at in p(θ|data).)

3. p(θ) is a prior distribution that you may pick based on prior data or
beliefs, before looking at your data X. Often, when you really don’t
have an idea of what θ is, you can choose a non-informative prior (more
on this later - if you’re a bit confused, no worries).

3.2 Bayesian Inference

In Bayesian Statistics, the story is basically this:

We have some data x, and we want to fit a good model to it, generally
either to be able to predict new future data or explain the past better. So
first, we choose some model M (e.g. a binomial model for coin flips), and
define our prior beliefs about the model M’s parameter(s), θ (e.g. I think
that the coin has a 50% chance of being fair: θ=.5, and a 25% chance each
of θ being .2 or .8).

Then we calculate the posterior distribution of θ, given our prior beliefs,
our chosen model, and the data x that we have using Bayes Rule:

f(θ|x) ∝ f(x|θ)f(θ) (3.3)

posterior ∝ likelihood ∗ prior (3.4)

Using this posterior distribution of θ, we can now predict new values of
x: x̃, by determining p(x̃| info & assumptions & past data):

p(x̃|x) =

∫
p(x̃|θ)p(θ|x)dθ (3.5)

From this, we can really make any type of inference about future data val-
ues, assuming our model is correct (e.g. confidence intervals, means, etc...).
But is the model correct? That’s the last part of the story. Model checking
and model comparison! Basically, say you’ve done the above process with
a few different priors, and even a few different models (perhaps a hypergeo-
metric instead of binomial model, or with a ‘hyper’-prior on the parameters
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of your original prior). How do you know: 1) if a model makes sense, and
is good, and 2) which of many models is best. To roughly determine which
model looks best, often people use what’s called a Bayes Factor:

B12 =
p(x|M1)

p(x|M2)
(3.6)

Where Mi = Model i. But with many models, it’s generally just ‘who
has the highest p(x|Mi)’. Model checking will be discussed later on, but ba-
sically, you simulate k sets of length n values of x̃, calculate k test statistics
(e.g. mean, sd, min, max), and check to see if the test statistic calculated
from your data x is not an extreme value when compared to the distribution
of k-test statistics that you have calculated from simulated values.

Below, you’ll find a basic scenario in theory on the left, with an example
of each step with real data on the right.
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1. Specify a likelihood distribution
and a prior before inspecting your
data. If you let your data x in-
fluence your prior(s) in any sig-
nificant way, you’ll end up over
fitting, and your resultant θ con-
fidence intervals will be tighter
than they should be. This is
especially important when you
don’t have a lot of data, because
your prior(s) will have a stronger
influence on your posterior dis-
tribution(s).

2. Collect some data, x.

3. Compute the posterior distribu-
tion for the parameter(s) of in-
terest, θ, given the particular x
that you saw: f(θ|x).

4. Make statistical inferences about
your posterior distribution, about
your model, and about future
predicted data (you’ll see that
this is quite easy once you have
(3).

5. Model Check. (Posterior Pre-
dictive Checks)

6. If model checking resulted in de-
pression and despair at your fu-
ture statistical success, repeat
steps 1-5 again. Possibly use
Bayes Factor to compare mul-
tiple models.

7. Refuse to get a job as an invest-
ment banker.

1. Example to comeeee.... yay a.

2.

3.

4.

5.

6.
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3.3 Hierarchical Models

Okay, that’s great and all, but it’s hard to see why this is so much more pow-
erful than classical frequentist statistical inference. Well, one of the strengths
of Bayesian Analysis is that it’s not to hard to build quite complex, hierar-
chical models.

β Normal

θ1 · · · θi · · · θn

X1 · · · Xi · · · Xn

(1) was used for prior probabilities, and the estimation of prior hyper-
parameters. (3) was used to create 0-1 polling-like data from (2). The 0-1
data was used to estimate the posterior probability of each state’s vote-share,
which was then used to estimate the posterior probability of Obama winning
the election.

3.4 Multi-Parameter Bayesian Models

Thus far, we have seen Bayesian inference in single-parameter models. Most
real problems require multiple parameters to appropriately model the data.
Example: Regression problems with multiple covariates. Advantages to the
Bayesian approach to inference stand out in higher-dimensional problems.

Bayesian tools allow us to marginalize over the values of unknown nuisance
parameters to obtain posterior distributions over the parameter(s) of interest:

p(θ1|x) =

∫
p(θ1, θ2|x) dθ2 (3.7)

... where p(θ1, θ2|x) ∝ p(x|θ1, θ2)p(θ1, θ2).
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3.5 Vocab Review

Bayes Theorem f(θ|x) = f(x|θ)f(θ)
f(x)

∝ f(x|θ)f(θ)

Conditional Probability f(y|x)f(x) = f(x, y) = f(x|y)f(y)

Marginal Probability fX(x) =
∑

y fX,Y (x, y) OR
∫∞
−∞ fX,Y (x, y)dy

Likelihood Function f(X|θ) =
∏n

i=1 f(Xi|θ)

p(data|θ) The likelihood of your data, given parameter(s) θ:
f(X|θ) =

∏n
i=1 f(Xi|θ)

Prior Distribution p(θ) . . . The distribution from which your (model as-
sumes) parameters are pulled. e.g. The distribution
from which θ is pulled, where the distribution from
which each Xi is determined by the value(s) of θ.

Hyperparameter α . . . A parameter that defines the distribution of your
prior distribution. e.g. a hyper parameter α that de-
fines the distribution from which θ is pulled, which then
defines the distribution from which each Xi is pulled
(according to the model).



Chapter 4

Priors

4.1 What is a Prior?

Philosophically, what is a prior?
- non informative priors (Why can’t you just use 1? In some cases, I’m not
even entirely sure.)
- informative priors (Only use these when you are informed)

Informative Priors:
State of Knowledge Interpretation: We express all knowledge and un-
certainty about θ (prior to collecting data) as if its value could come from a
random draw from the prior, p(θ)
Population Interpretation: The prior distribution represents a population
of possible parameter values, from which the θ of current interest is drawn.

You don’t have to worry excessively about getting your prior exactly right
when you’re going to have a lot of data, because as more data is incorpo-
rated into the equation, the prior matters less and less (the weight of the
data overpowers it). In my opinion, it is good practice to overestimate the
variance on your priors, if your priors are coming from your gut, as opposed
to another source of data (like history). (So, e.g., you could assume a normal
distribution over some prior parameter θ with variance 10, or variance 15,
the latter being ‘safer’.) If you don’t have a lot of data, and your prior is
unjustly narrowly centered around your data, you’ll be over-fitting.

23
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4.2 Conjugate Priors

So, we have our handy dandy Bayes equation:

f(θ|x) ∝ f(x|θ)f(θ) (4.1)

... where our data is represented by x. And we want to know the left
side of the equation, the posterior distribution. Well, with certain assumed
priors and data likelihoods, this is not so difficult. Others result in scary
integrals that are literally un-integratable, which you’ll need a computer (or
674 pencils) to solve well. We’re going to start with the nice situations first,
that don’t require computers. Yay, us. These easy situations arise when
your prior is ‘conjugate’ to your data’s likelihood distribution (i.e. the type
- normal, exponential, beta, etc., not its parameters).

With a conjugate prior, the posterior generally just pops out of the above
equation when you plug everything in and sort some things out, and that
posterior distribution will be from the same type of distribution as the prior
(e.g. exponential, beta, etc..., but with slightly different parameters to take
into account your data, x). Computations of the posterior with a conjugate
prior are pretty easy to do.

EXAMPLE: to come. LIST OF CONJUGATE PRIORS and LIKE-
LIHOODS to come.

Often, a distribution’s conjugate prior often is flexible enough to approx-
imate a large number of prior beliefs. As we collect even more data (under
the same likelihood), the posterior can be used as the next prior and it will
be conjugate! This allows for easy updates.

However, with some likelihoods, conjugacy does not exist, especially in multi-
dimensional parameter spaces. Additionally, some likelihood’s conjugate pri-
ors will not be able to describe your prior beliefs well, in which case you’ll
need to use non-conjugate priors and more advanced methods.

Note that all likelihoods from the exponential family have conjugate pri-
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ors. These include: normal, exponential, gamma, beta, Bernoulli, Poisson,
etc.

When you have a conjugate prior, you can literally just plug in your in-
formation into the equation ...

f(θ|x) ∝ f(x|θ)f(θ) (4.2)

... to get f(θ|x).

A prior can express specific prior information about parameters.
- That the parameter is known to fall in some subspace (e.g. some proportion
in [0,1]).
- Knowledge gained from previous experiments.
- Opinions from experts in the field (generally unsubstantiated with data
that can be integrated into the model).

Generally, the more data a model is given, the less influence the prior will
have on the final posterior estimation. So when you have a lot of data, it’s
less important to perfectly represent your prior, but it is always extremely
important to make sure your prior probabilities are non-zero at any values
that your parameter θ may take!

4.3 Non-Informative Priors

A prior can also express a lack of information. When little information about
a parameter θ is known before looking at the data, it’s important to use a
non-informative prior, whose goal is basically to have a minimal impact on
the posterior - let the data speak for themselves.
- We can use high variance priors if we have little confidence about our prior
beliefs.
- Non-informative priors are great if we have no prior beliefs and/or do not
want to influence the analysis with a prior.

EXAMPLE: Non-informative Prior for Binomial Likelihood
If X|θ ∼ Binomial(n, θ), then
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θ ∼ Uniform[0, 1] is non-informative because
p(θ|X ∝ p(X|θ)p(θ) = p(x|θ)

Principle of Indifference: All values are equally likely a priori. The sim-
plest type of non-informative prior is a prior which is flat across its parameter
space.
An improper prior does not integrate to 1.

The problem with flat priors... (–> Jeffrey’s Prior).

- transformations of random variables

4.4 Well, Shit

In the previous section, we were able to use handy priors and likelihoods to
calculate posterior distributions by hand. But - come on, it’s usually not
going to be the case that the data and story that you’re looking at are rep-
resented ideally by a conjugate prior and likelihood pair.

Solution? Glorious computers, that’s what.



Chapter 5

Grid Approximation

So, faced with both a computer, and an ugly non-conjugate problem, or a
conjugate problem plus laziness, grid approximation is the most intuitive
thing to do. It goes like this: instead of having an equation representing the
prior probability for any value of θ, you can have a vector of actual θ values,
and corresponding probability vector of the same length, where each element
i in this probability vector is the probability that element i in the θ vector
will occur, of all the θ given.

EXAMPLE: to come.

So. That’s awesome and simple and intuitive. My kind of thing! But,
wait, theeeeere’s less! Grid approximation does not do so well in high di-
mensional problems. Say you have ten different parameters that affect your
final posterior distribution: in order to maintain grid close-ness in your ten-
dimensional sample space, the fineness of your grids will have to grow expo-
nentially! If your initial parameter was defined over [0, 1] and you had 100
equally spaced samples, to keep that fineness in the ten-dimensional param-
eter space, you’d now need 10010 samples! (100, 000, 000, 000, 000, 000, 000,
or 1e+ 20.)

Another problem is non-smooth distributions. If your priors are particu-
larly bumpy, grid approximation might not work well.

27
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Bumpy Priors: Grid Approximation is Problematic
P
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Figure 5.1: An exaggeration of how a ‘bumpy’ distribution may not be well
estimated by a grid approximation.

But, worry not - there are yet cooler methods of estimating the posterior
distribution of a parameter θ with good ’ol computers.



Chapter 6

Model Checking & Model
Comparison
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Chapter 7

Bayesian Sampling

This chapter deals with with situations when it’s either impossible or just
not easy to calculate a posterior distribution, and for whatever reason (high
dimensionality, bumpy priors, or needed accuracy) grid approximation is not
optimal. The following sections outline various algorithms and methods to
sample from such posterior distributions.

7.1 Rejection Sampling

Say that you have a positive function f(θ) from which we want to draw
samples. Unfortunately, you don’t know how to draw samples from it. But
you do know how to draw samples from another density g(θ), where g(θ)¿0
for each θ where f(θ) > 0.

1. Find a number M such that f(θ)
g(θ)
≤M ∀θ.

2. Generate a number θ from g().

3. Generate a number u from Uniform[0,1].

4. If u ≤ f(θ)
Mg(θ)

then accept θ as a pull from f().

5. Repeat 2-4 until you have enough samples!

Note that, for efficiency’s sake, you want f and Mg to be as close as
possible, so you end up rejecting as few θ as possible. One easy approach is
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to just set g(θ) equal to your prior, p(θ), so that:

f(θ)

g(θ)
=
p(x|θ)p(θ)

p(θ)
= p(x|θ) ≤ p(x|θ̂MLE) = M (7.1)

This approach is a good one, although sometimes it is inefficient if g = Mp(x
is far above f(θ) in most places. Additionally, M is not always easy to find.
In which case, other approaches may be used...

7.2 Sampling Importance Resampling (SIR)

Sampling Importance Resampling is very similar to Rejection Sampling.
Again, you start off with a function f(θ) that you can’t pull samples from,
and a function g(θ) such that f(θ) ≤ g(θ) for all θ. Then:

1. Draw a sample θ1, . . . , θn from g.

2. For each θ, calculate wi = f(θ)
g(θ

3. Calculate qi = wi∑
i wi

4. Draw, with replacement, from θ1, . . . , θn with probability qi for each θi

The sample that you get is pretty much equivalent to a draw from f , espe-
cially when n is large and f and g are relatively ‘non-bumpy’.

7.3 MCMC Methods

Markov Chain Monte Carlo methods are a set of stochastic methods that are
great for sampling from difficult target distributions. They’re useful in high
dimensional problems (e.g. 100 different θs), when conjugacy does not hold
and grid approximations are not useful. MCMC methods are iterative - they
basically loop around some list of rules (algorithm) to eventually develop a
posterior distribution. Three are three popular versions: Gibbs Sampling,
Metropolis Hastings, and Metropolis.
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7.3.1 Markov Chain

A Markov chain is a process Xt = X0, X1, . . . , XT in discrete time t =
0, 1, . . . , T where p(Xt|X0, X1, . . . , Xt−1) = p(Xt|Xt−1). In other words, Xt is
only affected by the last Xt−1, but not by any other previous Xs. (Compar-
ing this to Poisson’s ‘memoryless’ attribute, you can think of Markov Chains
as having very short term memories! Uhhh, 50 First Dates, anyone?)

A Markov chain is irreducible if it is possible to reach all states (all possible
‘X’s) from any other state. So, if pn(j|i) represents the probability of getting
from state i to state j in n steps, then irreducibility means that for any i
and j,

pn(j|i) < 0 and pm(i|j) < 0 for some m, n (7.2)

A Markov chain is periodic with period d if pn(i|j) = 0 unless n = kd
for some integer k. If d = 1 then chain is aperiodic.

THEOREM: A finite-state, irreducible, aperiodic Markov chain
has a limiting stationary distribution: π = limn→∞p

n(j|i). Then
the limiting distribution, π, is reached no matter where we start the
Markov chain.

The idea behind Markov Chain Monte Carlo methods is the following: you
want to sample from some posterior distribution, p(θ|x), but it’s too difficult,
so instead you create a Markov Chain θ(t), t ∈ T , with a stationary distribu-
tion p(θ|textbfx). In other words, as t→∞, then the samples given by the
Markov Chain will be equivalent to samples taken from our wanted posterior
distribution, p(θ|x).

In this scenario, we know the stationary distribution we want - p(θ|x) -
and we want a Markov chain that will take us there: π = p(θ|x) as t → ∞.
Once you find that chain, all you have to do is choose some initial value(s) θ
and run the chain for a large number of steps until it converges to π (more
on how to tell if it’s converged later). Then you can run it for a large number
of more steps to get decent ‘pull’ from our wanted posterior distribution.

All MCMC methods stem from this idea. The only difference is how the
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Markov chain transitions are made. Some algorithms are less prone than
others to getting ‘stuck’ on a probability hill (local modes in the density
curve of your posterior distribution), while some take longer to converge.

But, question: how the hell are you supposed to create out of thin air a
Markov Chain like that? Well, the short answer is that you don’t really
have to. There are a lot of cool, free, and easy programs you can use (e.g.
packages in R) that do it for you. But, we’ll go over the theory anyways, and
then some computer examples using R.

7.3.2 Gibbs Sampling

A Gibbs Sampler is an MCMC algorithm that uses conditional posterior dis-
tributions, p(θi|θ1, . . . , θi−1, θi+ 1, . . . , θn,x) = p(θi|rest,x), to develop the
wanted posterior distribution, p(θ|x). All i conditional posterior distribu-
tions are cycled through for each iteration of the Gibbs sample. Say that
you have three parameters θ = θ1, θ2, θ3. To begin a Gibbs Sampler, you first
have to guess initial values θ0 = θ0

1, θ
0
2, θ

0
3. Then one iteration of the Gibbs

Sampler is as follows:

1. Draw θ1
1 from p(θ1|θ2 = θ0

2, θ3 = θ0
3,x)

2. Draw θ1
2 from p(θ2|θ1 = θ0

1, θ3 = θ0
3,x)

3. Draw θ1
3 from p(θ3|θ1 = θ0

1, θ2 = θ0
2,x)

So you get θ1 = θ1
1, θ

1
2, θ

1
3, which you can use to replace θ0 with, to then

repeat steps 1-3 again, for a second iteration of the sampler. And so on and
so forth, until you have converged your sampler, and later have a nice sample
of θs from your wanted posterior distribution, p(θ|x).

Note that Gibbs Samplers can be created relatively easily for models that are
either conjugate or semi-conjugate (?). A semi-conjugate prior is a prior
that is the product of priors:

p(µ, σ2) = p(µ)p(σ2) (7.3)

... each of which, conditioned on the other parameters, is conjugate. (?)
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When the conditional distributions of a posterior distribution are easy to
derive and sample from, Gibbs Sampling is a very efficient method, and it
converges quickly. However, conditional distributions are not always easy to
derive. Slower, but much more general algorithms like Metropolis Hastings
work well in these scenarios.

7.3.3 Metropolis

While Gibbs Sampling requires that we can sample from full conditionals
of p(θ), the Metropolis and Metropolis Hastings algorithms need only our
model’s likelihood and priors. (Gibbs Sampling is actually a less powerful,
special case of the Metropolis Hastings MCMC method.)

The Metropolis algorithm (like Gibbs) begins with the selection of initial
value(s), theta0 = θ0

1, θ
0
2, . . . , θ

0
n. Then one iteration of the Metropolis-

Hastings algorithm is as follows:

1. Sample a proposal θ from a proposal (jumping) distribution, Jt(θ
∗|θt−1).

Note that the the proposal distribution must be symmetric, i.e.

J t(θa|θb) = J t(θb|θa) ∀ θa, θb, t (7.4)

2. Compute the ratio of the posteriors:

r =
p(θ∗|x)

p(θt−1|x)
(7.5)

3. Set the next point (θi in nth dimensional space) in the Markov chain
equal to:

θt =

{
θ∗, with probability min(r, 1),

θt−1, otherwise.
(7.6)

In other words, the Metropolis algorithm always accepts proposals of θ∗ for
which p(θ∗|x) ≥ p(θt−1|x), and we only sometimes accept proposals of θ∗ for
which p(θ∗|x) < p(θt−1|x), with acceptance probability corresponding to the
probability of p(θ∗|x) compared to p(θt−1|x).

The result of this is that the Metropolis algorithm doesn’t always go up-
hill, so it won’t always get stuck in local probability maxima.
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Although there are various options, the multivariate normal distribution,
with a mean of θt−1, is the most often chosen for Jt.

I’m too lazy to write down the proof, for now.

7.3.4 Metropolis Hastings

The Metropolis Hastings algorithm is similar to, but even more flexible than
the Metropolis algorithm. The proposal density of the Metropolis Hast-
ings algorithm doesn’t need to by symmetric, i.e. J t(θa|θb) need not equal
J t(θb|θa). But to correct for the asymmetry, the ratio r is replaced by:

r =
p(θ∗|x)/Jt(θ

∗|θt−1)

p(θt−1|x)/Jt(θt−1|θ∗)
(7.7)

Allowing these asymmetric jumps can accelerate convergence.

The Metropolis and Metropolis-Hastings algorithms don’t require that we
can derive the conditional posteriors (as is necessary in Gibbs sampling), but
it also means that Gibbs sampling, unlike the Metropolis and Metropolis-
Hastings algorithms, requires that we can derive conditional posteriors. How-
ever, it has the benefit of never throwing out any proposed points of θ. As a
result, Metropolis and Metropolis-Hastings algorithms tends to be much less
efficient (slower).

The more narrow your proposal density is, the slower your model will con-
verge. But the wider your proposal density is, the more crazy your proposal
θs will be, leading to a lot of rejection. It’s a fine line!

An often used proposal density is the multivariate normal with mean θt−1,
but with correlation matrix

∑
. The optimal proposal covariance is the true

covariance of the posterior, but this is unknown, so we have to estimate it,
and then adjust it over iterations. (Optimal acceptance rates of proposed
values are generally in between 25 and 50%, although these percentages get
smaller for higher dimensional problems). A solid estimate for

∑
is the in-

verse observed Fisher Information matrix. (?)

In general, when you’re working on problems that don’t take hours (or days,
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months, or years!) to compute, Metropolis and Metropolis-Hastings algo-
rithms are a great, flexible bet (and are particularly easy to use in R).

7.4 MCMC Diagnostics

So I’ve been talking about checking for ‘convergence’ this whole time without
really explaining what that means. In a nutshell, as I mentioned before, a
model has converged when the samples you are drawing from it are (more
or less) equivalent to drawing from the true posterior distribution you are
aiming for. As t → ∞, this is guaranteed, but models generally converge
much quicker than that, thankfully. But how can you tell? Well, there are
both numeric and visual tests you can run to see if your model seems to have
converged.

7.4.1 Traceplots

7.4.2 Autocorrelation Plots

7.4.3 Multiple Sequence Diagnostic
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Chapter 8

Linear Models

Linear modeling is probably the most widely used statistical tool. It’s also
severely misunderstood by many, but hey, what to do expect? (A lot of peo-
ple seem to forget that linear models are just that - linear ! They only detect
linear trends. It’s always important to visualize your residuals (data - line)
before making any conclusions. But, that’s another rant. Additionally, the
distance measure that people generally use is not some God-given formula
- it’s relatively arbitrary, used mostly because of mathematical convenience.
But, that’s neither here nor there...) The basic question to be answered is
this: how does a an ‘outcome’, y, vary with regards to a vector of covariates,
x = x1, . . . , xn?

x and outcome y can be discrete or continuous. The matrix of covariates,
X, is called the design matrix. The most commonly used linear regression
model goes something like this:

yi ∼ β1xi,1 + β2xi,2 + · · ·+ βnxi,n (8.1)

errori = εi ∼ Normal(0, σ2) (8.2)

Then the likelihood for the normal linear model is then:

y|βσ2,X ∼ Normal(Xβ, σ2I) (8.3)

A handy non-informative prior on (β, σ2) is p(β, σ2) ∝ σ−2. It’s not very
hard to derive conditional posterior distributions of β and σ2, which allows
one to use a Gibbs sampler to determine the posterior distribution of y!
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β|σ2,X,y ∼ Normal

(
(XTX)−1XTy, σ2(XTX)−1

)
(8.4)

σ2|β,X,y ∼ Inverse-Gamma

(
n− k

2
,
n− k

2
s2

)
(8.5)

It’s also nice to be able to predict new value of ỹ for a new set of
covariates x̃1, . . . , x̃n, i.e. draw from the posterior predictive distribution:
p(y|y,X, x̃1, . . . , x̃n)

8.1 Simple Linear Models

8.2 Hierarchical Linear Models

A Simple Random Effects Model is a linear model that may be described
as follows:

yi|β, σ2,xi ∼ Normal(β0 + β1xi,1 + · · ·+ βpxi,p, σ
2) (8.6)

Where

βj ∼ Normal(α, σ2
β) for j ∈ 0, ..., p (8.7)

Example:
xi,j = I(student i is in school j) (Where I is an indicator function.) Each
school has its own effect on student performance, yi, but the schools are all
tied together via the common prior over β1, ..., βp.

A Mixed Effects Model is a linear model where:
β1, ..., βm have independent non-informative priors (‘fixed effects’), and
βm + 1, ..., βp ∼ Normal(α, σ2

β) (‘random effects’).
The term random effects refers to the deviations of randomly-selected

entities (e.g., schools) from the average. When dealing with lots of predictor
variables (large p), usually most of them will have no effect (β = 0)

In classical statistics, there are many methods to try to select a subset of co-
variates: forward / backward stepwise selection, least-angle regression, Lasso,
ridge regression ,etc.
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In Bayesian Regression, we can achieve similar results using hierarchi-
cal linear models by setting up a prior distribution over the β parameters
that gives each parameter a high probability of being near zero and a small
probability of being far from zero
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Chapter 9

Bayesian Model Averaging
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Chapter 10

Mixture Models
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Chapter 11

Bayesian Hypothesis Testing

11.1 Frequentist (Classical) Hypothesis Test-

ing

11.2 Bayesian Hypothesis Testing

Frequentist hypothesis testing generally follows this story: you have a like-
lihood (e.g. exponential or normal): x|θ ∼ p(x1, ..., xn|θ), and you want to
figure out if you should accept some original null hypothesis, H0, or reject it
in favor of another specific hypothesis, H1.

For example, you may have:
• Simple: H0: θ = 1 versus H1: θ = 2
• One Sided: H0: θ = 1 versus H1: θ ≥ 2
• Two Sided: H0: θ = 1 versus H1: θ 6= 2

The output of such a test is a p-value, which is the probability that, given the
null hypothesis is true, you would have observed a test statistic (e.g. mean of
data x) as or more extreme than the test statistic of the data you observed.
Very small p-values suggest that H0 may not be correct.

***What about simple tests??***

This approach is good, and solid (despite what many mal-informed Bayesians
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say). But it is quite inflexible, and people in the business world do have a
stunning practice of falling in love with 95% significance tests and forgetting
to actually use their brains. But that’s another story.

Bayesian Hypothesis Testing is a little different. It’s more flexible,
but it’s also more easily twisted and misunderstood (in my opinion).

You start off with a likelihood: p(x|θ). You want to test basically the same
thing as frequentist hypothesis testing: H0: θ ∈ Θ0 versus H1: θ ∈ Θ1, where
H0 and H1 encompass all possibilities.

Here, though, we can assign prior distributions:
• p(H0) • p(H1) • p(θ|H0) • p(θ|H1)

Then the marginal likelihood under each hypothesis is:

p(x|Hi) =

∫
Θ

p(x|θ)p(θ|Hi) dθ i = 0, 1 (11.1)

The Bayes Factor of H0 to H1 is defined as follows:

B01 =
p(x|H0)

p(x|H1)
(11.2)

Then the posterior probability of the null hypothesis (by Bayes) is:

p(H0|x) =
p(H0)p(x|H0)

p(H0)p(x|H0) + p(H1)p(x|H1)
= [1+

p(H1)

p(H0)

1

B01

]−1 = 1−p(H1|x)

(11.3)
Since H0 and H1 encompass all hypothesis possibilities, the denominator in
the second part of the sequence above, the sum of H0 and H1’s joint proba-
bilities with x, is simply p(x).

Conclusions may be drawn directly from the posterior odds: H0 is ‘accepted’
if p(H0|x) > p(H1|x)

Instead of p-values, in Bayesian hypothesis testing, the Bayes Factor is typ-
ically reported, so that readers may place their prior beliefs about H0 and
H1 into the [1 + p(H1)

p(H0)
1
B01

]−1 equation (though they don’t get to choose their
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own prior beliefs about p(θ|Hi).

As a very vague guideline (Jeffreys 1961):
1 - 3.3 ⇒ Barely worth mentioning
3.3 - 10 ⇒ Substantial
10 - 30 ⇒ Strong
30 to 100 ⇒ Very Strong
> 100 ⇒ Decisive

But interpretation of B values will always depend on the situation!

You can also use sampling to estimate the Bayes Factor.
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Chapter 12

Summary

1. Bayes Rule

2. Conjugate Priors

3. Informative and Non-Informative Priors

4. Grid Approximation

5. Hierarchical Models

6. Posterior Simulation

7. Model Checking

8. Gibbs: Metropolis Hastings

9. Gibbs: MCMC Methods

10. Hierarchical Bayesian Linear Modeling
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